- уравнение Лапласа
-
уравнение Лапласа
—
[http://slovarionline.ru/anglo_russkiy_slovar_neftegazovoy_promyishlennosti/]Тематики
- нефтегазовая промышленность
EN
- Laplace's equation
Справочник технического переводчика. – Интент. 2009-2013.
Уравнение Лапласа — Уравнение Лапласа дифференциальное уравнение в частных производных. В трёхмерном пространстве уравнение Лапласа записывается так: и является частным случаем уравнения Гельмгольца. Уравнение рассматривают также в двумерном и одномерном… … Википедия
Лапласа уравнение — Уравнение Лапласа уравнение в частных производных. В трёхмерном пространстве уравнение Лапласа записывается так: и является частным случаем уравнения Гельмгольца. Уравнение рассматривают также в двумерном и одномерном пространстве. В двумерном… … Википедия
Уравнение в частных производных — Дифференциальное уравнение в частных производных (общеупотребительно сокращение (Д)УЧП, также известны как уравнения математической физики, УМФ) дифференциальное уравнение, содержащее неизвестные функции нескольких переменных и их частные… … Википедия
Уравнение Пуассона — эллиптическое дифференциальное уравнение в частных производных, которое, среди прочего, описывает электростатическое поле, стационарное поле температуры, поле давления, поле потенциала скорости в гидродинамике. Оно названо в честь знаменитого… … Википедия
Уравнение колебаний струны — Волновое уравнение в математике линейное гиперболическое дифференциальное уравнение в частных производных, задающее малые поперечные колебания тонкой мембраны или струны, а также другие колебательные процессы в сплошных средах (акустика,… … Википедия
Уравнение колебания струны — Волновое уравнение в математике линейное гиперболическое дифференциальное уравнение в частных производных, задающее малые поперечные колебания тонкой мембраны или струны, а также другие колебательные процессы в сплошных средах (акустика,… … Википедия
Лапласа оператор — Оператор Лапласа (лапласиан) дифференциальный оператор, действующий в линейном пространстве гладких функций и обозначаемый символом . Функции он ставит в соответствие функцию . Оператор Лапласа часто обозначается следующим образом , то есть в… … Википедия
ЛАПЛАСА - БЕЛЬТРАМИ УРАВНЕНИЕ — Бельтрами уравнение, обобщение Лапласа уравнения для функций на плоскости на случай функций ина произвольном двумерном римановом многообразии R класса С 2. Для поверхности R с локальными координатами x, h и первой квадратичной формой Л. Б. у.… … Математическая энциклопедия
ЛАПЛАСА ОПЕРАТОР — лапласиан, дифференциальный оператор определяемый формулой (здесь координаты в ), а также некоторые его обобщения. Л. о. (1) является простейшим эллиптич. дифференциальным оператором 2 го порядка. Л. о. играет важную роль в математич. анализе,… … Математическая энциклопедия
ЛАПЛАСА УРАВНЕНИЕ — дифференциальное ур ние с частными производными где u(х, у, z) ф ция независимых переменных х, у, z. Названо по имени франц. учёного П. Лапласа, применившего его в работах по тяготению (1782). К Л. у. приводят мн. задачи физики и механики, в к… … Физическая энциклопедия